Wednesday, September 28, 2022
HomeNewsBioengineering Better Photosynthesis Increases Yields in Soy Crops by 33%

Bioengineering Better Photosynthesis Increases Yields in Soy Crops by 33%

In first-of-its-kind research, University of Illinois scientists have genetically altered soybean plants to increase the efficiency of photosynthesis, resulting in greater production of beans without losing any quality. The result of the study has been published recently in the prestigious journal Science (De Souza, Burgess, et al. 2022).

For the last two decades, bioengineers have been using highly specific, efficient, still simple DNA/RNA editing tools, such as clustered regularly interspaced short palindromic repeats CRISPR, that allow changes in the genetic make of cells to produce improved or novel organisms. In the Agriculture industries, the technology was used to increase the shelf life of the produce or to increase resistance to insects and herbicides and benefitted farmers in many countries.

Today, many scientists have achieved remarkable results using the technology enhancing quality and quantity of many agricultural products such as rice, wheat, maize, and tomato, for review see (Liu, Yang, et al. 2021).

Bioengineers at the University of Illinois of an international project Realizing Increased Photosynthetic Efficiency (RIPE), which aims to increase global food production in Sub-Saharan Africa, have used gene editing technology to improve the efficiency of photosynthesis in soy plants.


Photosynthesis is a mechanism that green plants use to produce building blocks of energy molecules essential for most life forms on earth. The process, in presence of sunlight, converts carbon dioxide and water into carbohydrates.

6CO2 + 12H2O + Light Energy → C6H12O6 + 6O2 + 6H2O

However, excess light is dangerous for photosynthesis. It causes oxidative damage and decreases the efficiency of photosynthesis. There are several mechanisms that photosynthetic organisms employ to protect them from excess sunlight.

READ ALSO  Late-childhood Obesity and Excess Body Fat: Low-quality Maternal Diet During Pregnancy May Be Associated

In one mechanism, the leaves dissipate excess absorbed light energy as heat through a mechanism called nonphotochemical quenching (NPQ). When the leaves are shaded by clouds, other leaves, or due to sun movement, it resumes the photosynthetic process by shutting down the photoprotective mechanism.

However, one of the biggest problems is the protective mechanism continues for many minutes, costing important time that could have been used for biomass production during photosynthesis. For soybean, slow NPQ relaxation during transitions is estimated to cost more than 11% of daily carbon assimilation. RIPE scientists have been working to improve the efficiency of photosynthesis by minimizing the transition time for more than a decade now.

Several previous reports have shown that the overproduction of three thylakoid proteins violaxanthin de-epoxidase, PsbS and zeaxanthin epoxidase, collectively known as ‘VPZ lines” of Xanthine cycle that helps in the photoprotection of the plants showed accelerated relaxation of NPQ and exhibited enhanced crop production in tobacco (Kromdijk, Glowacka, et al. 2016) and Arabidopsis (Garcia-Molina and Leister 2020).


Amanda De Souza and colleagues bioengineered the same modification into the soybean plant, widely cultivated—the 4th most important crop and the most important source of vegetable protein globally.

De Souza et al. found that photosynthetic efficiency in the modified plants was higher during fluctuating light conditions and yields up to 33% higher than in unmodified plants. They replicated the trials and obtained similar outcomes across five independent events.

Further, they observed that despite the increased plant yield, seed protein and oil content remained unaltered. Additional field tests of these genetically modified soybean plants are being conducted now, the results of which are expected in early 2023.

READ ALSO  Food Insufficiency During the Pandemic Linked to Depression, Anxiety

In a press release, the lead author of the study said, “The number of people affected by food insufficiency continues to grow, and projections clearly show that there needs to be a change at the food supply level to change the trajectory.”

The RIPE project research scientist added, “Our research shows an effective way to contribute to food security for the people who need it most while avoiding more land being put into production. Improving photosynthesis is a major opportunity to gain the needed jump in yield potential.”

Related Publications

De Souza, A. P., S. J. Burgess, et al. (2022). “Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotection.” Science 377(6608): 851-854. ‘doi:10.1126/science.adc9831’.
Garcia-Molina, A. and D. Leister (2020). “Accelerated relaxation of photoprotection impairs biomass accumulation in Arabidopsis.” Nat Plants 6(1): 9-12. ‘10.1038/s41477-019-0572-z’.
Kromdijk, J., K. Glowacka, et al. (2016). “Improving photosynthesis and crop productivity by accelerating recovery from photoprotection.” Science 354(6314): 857-861. ‘10.1126/science.aai8878’.
Liu, Q., F. Yang, et al. (2021). “Application of CRISPR/Cas9 in Crop Quality Improvement.” Int J Mol Sci 22(8): 4206. ‘10.3390/ijms22084206’.



Please enter your comment!
Please enter your name here

- Advertisment -spot_imgspot_img

Recent Post


Most Commented

Latest Reviews


COVID-19 Vaccine Reluctance: In The United States and Beyond


Approximately one in three American are unlikely or hesitant to get COVID-19 vaccine. Acceptance rates are high among Chinese (90%) and low among Russian (55%). Other than the vaccine's safety and efficacy, trust in governments is strongly associated with vaccine acceptance.

Most Read